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Abstract 19 

The addition of juveniles to marine populations (termed “recruitment”) is highly variable due to 20 

variability in the survival of fish through larval and juvenile stages.  Recruitment estimates are 21 

often large or small for several years in a row (termed “autocorrelated” recruitment).  22 

Autocorrelated recruitment can be due to numerous factors, but typically is attributed to multi-year 23 

environmental drivers affecting early life survival rates.  Estimating the magnitude of recruitment 24 

autocorrelation within a stock assessment model and examinations on its effect on the quality of 25 

forecasts of spawning biomass within stock assessments is uncommon.  We used a simulation 26 

experiment to evaluate the estimability of autocorrelation within a stock assessment model over a 27 

range of levels of autocorrelation in recruitment deviations.  The precision and accuracy of 28 

estimated autocorrelation, and the ability of an integrated age-structured stock assessment 29 

framework to forecast the true dynamics of the system, were compared for scenarios where the 30 

autocorrelation parameter within the assessment was fixed at zero, fixed at its true value, internally 31 

estimated within the integrated model, or input as a fixed value determined using an external 32 

estimation procedure that computed the sample autocorrelation of estimated recruitment 33 

deviations.  Internal estimates of autocorrelation were biased toward extreme values (i.e., towards 34 

1.0 when true autocorrelation was positive and -1.0 when true autocorrelation was negative).  35 

Estimates of autocorrelation obtained from the external estimation procedure were nearly 36 

unbiased.  Forecast performance was poor (i.e., true biomass outside the predictive interval for the 37 

forecasted biomass) when autocorrelation was ignored, but was non-zero  in the simulation.  38 

Applying the external estimation procedure generally improved forecast performance by 39 

decreasing forecast error and improving forecast interval coverage.  However, estimates of 40 

autocorrelation were shown to degrade when fewer than 40 years of recruitment estimates were 41 

available. 42 

 43 

Keywords: autocorrelated recruitment; integrated stock assessment model; statistical catch at age; 44 

rebuilding plan; population forecast  45 
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1.  Introduction  46 

Under the United States Magnuson-Stevens Fishery Conservation and Management Act (United 47 

States Public Law 104-297), all stocks included in United States Fishery Management Plans must 48 

have target and limit reference points and forecasts of the level of catch (annual catch limit) that 49 

will prevent overfishing.  Protocols for calculating annual catch limits in a way that will prevent 50 

overfishing with a specified probability have been developed (Shertzer et al., 2008), but are 51 

dependent on the quality of forecast precision.  Further, all overfished stocks must have a 52 

rebuilding plan.  Rebuilding plans involve specifying management measures to rebuild the stock 53 

to a biomass associated with maximum sustainable yield (����) within 10 years (or, if rebuilding 54 

within 10 years is impossible, then one generation time plus the median time for rebuilding in the 55 

absence of fishing).  Legally, rebuilding plans must be more likely than not to succeed, i.e., be 56 

based upon a probabilistic forecast of future population dynamics given the agreed level of fishing 57 

that implies recovery with ≥ 50% probability. 58 

 Stock assessment models represent the link between collected data and scientific advice in 59 

fisheries management.  Assessments are expected to use fits to historical data and prescribed 60 

harvest policies to forecast future stock abundance and catch levels.  These predicted “Acceptable 61 

Biological Catches” must account for scientific uncertainty and ensure ≤ 50% probability that 62 

overfishing will occur (Methot et al., 2013).  Variability in recent recruitment to the stock is a 63 

major contribution to this scientific uncertainty.  As the United States National Marine Fisheries 64 

Service (NMFS) works to reduce the number of overfished stocks, projection success is being 65 

examined more critically, and the accuracy of probabilistic forecasts in rebuilding plans is 66 

receiving increased research attention (Neubauer et al., 2013; NRC, 2013). 67 

 Reference points and rebuilding forecasts are often estimated using a stock assessment model 68 

that treats fluctuations in recruitment as a random process around a prediction derived from a 69 

presumed relationship between spawning biomass and recruits (Clark, 1993; Methot and Wetzel, 70 

2013).  Stock assessments are increasingly conducted using “integrated” population dynamics 71 

models that typically incorporate many data types, including samples of compositional data from 72 

fisheries and surveys, indices of abundance, and information regarding total fishery harvests 73 

(Maunder and Punt, 2013).  These data are combined to estimate values for population productivity 74 

(parameters in the stock-recruitment relationship) and status (spawning biomass in each year 75 

relative to reference points).  Probabilistic forecasts of future population dynamics can then be 76 

made given assumed fishing mortality rates.   77 

 Recent studies illustrate that recruitment for many fishes is non-random over time and includes 78 

high and low periods (Hollowed et al., 2001; Szuwalski et al., 2014; Thorson et al., 2014).  These 79 

periods could be driven by environmental factors acting on recruit survival (Wilderbuer et al., 80 

2002), adult reproductive output (Jørgensen et al., 2006), or both simultaneously (Okamoto et al., 81 

2012; Wooster and Bailey, 1989), or changes in the abundance of predators (Bailey, 2000).  82 

Ideally, researchers can identify measureable environmental factors that are correlated with 83 

recruitment deviations or regime shifts, and which can be forecast into the future (Haltuch and 84 

Punt, 2011).  If an environmental factor that helps predict future recruitment can be identified, it 85 

can then be used to inform rebuilding forecasts (Holt and Punt, 2009; Punt, 2011) and reference 86 

point calculations (Lindegren and Checkley, 2013).  If an environmental factor cannot be 87 

identified, population forecasts are sometimes calculated for various “states-of-nature”, where 88 

each state-of-nature depends upon a hypothetical scenario for expected future recruitment (e.g., 89 

high, average, and low productivity scenarios; Peterman and Anderson, 1999). 90 
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 When correlated measurable environmental factors remain unidentified, the influence of 91 

regime shifts can still be accounted for by invoking autocorrelation in future recruitment deviations 92 

(i.e., where future recruitment deviations are greater or less than zero for many years in a 93 

sequence).  Including “autocorrelated recruitment” in the population dynamics model may result 94 

in wider forecast intervals (i.e., less precise) compared with the case in which recruitment is 95 

assumed to follow a white-noise process.  This wider forecast interval may, in some cases, have 96 

better statistical coverage (e.g., a 75% forecast interval that contains the true value 75% of the 97 

time) than forecasts that do not account for autocorrelation in recruitment.  Well-calibrated 98 

statistical coverage is a pre-requisite of probabilistic methods used for forecasting and reference 99 

point determination (Shertzer et al., 2008).   100 

 In this study, we explore and evaluate the performance of population forecasts obtained from 101 

an integrated, age-structured assessment model when recruitment is autocorrelated.  We conduct 102 

a simulation experiment using a design involving six plausible levels of autocorrelation in 103 

recruitment deviations (ρ) and four alternative configurations for estimating ρ in the assessment 104 

model.  We explore estimation performance by answering two questions:  105 

1. How well can the magnitude of autocorrelation be estimated?  and  106 

2. Does accounting for autocorrelation improve the accuracy and predictive coverage of 107 

forecasts compared with ignoring autocorrelation in recruitment deviations?   108 

We conclude by outlining a practical strategy to test and account for autocorrelated recruitment 109 

when generating forecasts in real-world assessment models. 110 

2. Methods 111 

We conducted a simulation experiment using the Stock Synthesis (SS; based on version 3.24f) 112 

assessment software (Methot and Wetzel, 2013), which is widely used in the Unites States and 113 

provides an integrated framework for conducting assessment models for a broad variety of data 114 

and biological conditions.  The SS software is an age-structured forward-projection single-species 115 

stock assessment framework that estimates recruitment along with other parameters related to 116 

stock productivity and trends.  SS uses the C++ ADMB libraries (Fournier et al., 2012) to calculate 117 

uncertainty estimates for parameters of interest (e.g., past and future recruitments) based on the 118 

Delta method approximation.  Simulations and analyses were accomplished using the ss3sim 119 

software package (Anderson et al., 2014a, 2014b; available at github.com/kellijohnson/AR-perf-120 

testing) to ensure the results are reproducible. 121 

 The simulation framework consists of three components: (1) an operating model that generates 122 

the true population dynamics; (2) a sampling model that generates data from the operating model; 123 

and (3) an estimation method that is applied to the simulated data, where the parameter estimates 124 

and derived quantities (i.e., forecasted future population abundances) from the estimation method 125 

can be compared with their true values from the operating model.  We use a design involving six 126 

levels of ρ and four alternative configurations of the estimation method. Additionally, a “less-127 

informative” scenario was simulated and fitted using each estimation method while also estimating 128 

stock-recruit steepness to facilitate evaluating performance in a more realistic environment.  One 129 

hundred simulation replicates were generated for each scenario, where each replicate has a 130 

different realization of process (here, recruitment deviations) and observation errors.  Each 131 

replicate involves simulating population dynamics over 100 years, which we divide into three 132 

periods: 133 

1. “Burn-in period” – Years 1-25 are simulated without any fishing; 134 
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2. “Fishing period” – Years 26-80 include a simulated fishery, with fishing mortality set to 135 

FMSY, and the potential for data from the fishery and a survey, which is used to fit an 136 

assessment model in year 80; and  137 

3. “Forecast period” – Years 81-100 are simulated without fishing, which can be compared 138 

to forecasts based on parameter estimates derived from the estimation method.    139 

2.1 Operating model 140 

The operating model represents a cod-like life history based on biological parameters estimated 141 

from the stock assessment for North Sea cod (Gadus morhua; Deroba et al., 2015) with some 142 

simplifications facilitating interpretation of the results (Table 1).  Simplifications include: one 143 

fishery and one survey, combined sexes, and selectivity parameters based on the maturity ogive. 144 

 We used the steepness-parameterization of the Beverton-Holt stock-recruit function: 145 

�� = �	
��
�����	���
��	��� ��
����/�, (1) 146 

where rt  and bt are the estimates of recruitment output and spawning biomass, respectively, in year 147 

t, h, and r0 are estimated parameters representing steepness (the strength of recruitment 148 

compensation) and average recruitment at unfished spawning biomass b0.  The recruitment 149 

deviation εt is calculated as: 150 

�� = ����� + ���1 − ��, (2) 151 

where δt is a normally distributed coefficient representing recruitment variability  after accounting 152 

for the stock recruit relationship:  153 ��~#�0, &
��, (3) 154 

where &
� is the marginal variance of recruitment deviations and ρ is the magnitude of 155 

autocorrelation in recruitment.  Eq. 1 includes the term ��
����/�, which has an average value of 156 

1.0.  This term is included to ensure that r0 is equal to mean (not median) recruitment given 157 

unfished spawning biomass.   158 

 Each replicate of the operating model involved simulating true dynamics over 100 years, where 159 

recruitment is variable each year, but the same across scenarios for a given iteration (i.e., the values 160 

of �� for the first replicate of the ρ = 0.0 scenario were the same as for the first replicate of the ρ = 161 

0.9 scenario, see Fig. 1).  Years 1 through 25 had no fishing and are included to ensure that the 162 

population age-structure in year 25 had plausible deviations away from its expectation in an 163 

unfished state.  In years 26-80, fully-selected fishing mortality, F, was fixed at the value that 164 

produced MSY.  Fishery selectivity was logistic, based on fish length, and was identical to the 165 

maturity ogive.  Survey selectivity was similar, except that the length at which 50% of individuals 166 

were selected by the survey was specified as 80% of the length at which 50% of individuals were 167 

mature to ensure that the survey sampled younger fish than were caught in the fishery.   168 

 We simulated data for six scenarios that differed in the value of autocorrelation used to 169 

generate recruitment: -0.25, 0, 0.25, 0.5, 0.75, and 0.9.  Included levels of ρ are centered 170 

approximately around estimates from recent meta-analyses (Mueter et al., 2007; Thorson et al., 171 

2014). An autocorrelation level of 0.5 and a marginal log-standard deviation of recruitment of 0.6 172 

(0.2 higher than all other scenarios) was used for a “less-information” scenario. 173 
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2.2 Sampling model  174 

Annual catch was reported without error from the start of the fishery (year 26) to the year of the 175 

assessment (year 80).  Fishery and survey age-composition data were simulated every year for 176 

years 26-80, and were drawn from a multinomial distribution with an annual sample size of 100.  177 

The survey was simulated every year providing an index of relative abundance for years 26-80, 178 

and the abundance index was drawn from a lognormal distribution with log-standard deviation of 179 

0.1 and log-mean equal to logarithm of stock biomass available to the survey in that year.  Data 180 

are relatively informative to focus the results on the effects of autocorrelated recruitment 181 

deviations when estimation is theoretically possible. Data collection for the “less-information” 182 

scenario started in year 41 and the log-standard deviation of the index of abundance was 0.25. 183 

2.3 Estimation method 184 

An age-structured stock assessment model was fit to each simulated data set, using data generated 185 

during the “fishing period” (see Table 1 for a list of estimated parameters).  Each estimation 186 

method provides forecasts of population abundance during years 81 to 100, and estimates 187 

recruitment deviations for years 1-100.  For clarity of communication, we refer to recruitment 188 

deviations during the three periods: 189 

1. Recruitment deviations for years 1-25:  These recruitment deviations occur prior to the 190 

collection of any data, and are estimated so that the estimated age-structure in the first yearwith 191 

data (typically year 26) has plausible deviations away from the unfished age-distribution;  192 

2. Recruitment deviations for years 26-80:  These recruitment deviations occur during years with 193 

available data, and are generally estimated with some precision;  194 

3. Recruitment deviations for years 81-100:  These recruitment deviations occur during the 195 

forecast period, and ensure that dynamics during this period include a plausible magnitude of 196 

recruitment variation.   197 

All estimation methods are provided no data during the forecast period (years 81-100), so 198 

recruitment deviations for years 81-100 are estimated at their expected value (i.e., zero when ρ =0, 199 

or decaying towards zero from the value of the estimated recruitment deviation in year 80 when ρ200 

0).   201 

 The estimation method is similar to the operating model, except it also includes annually 202 

varying bias-correction for estimated recruitment:  203 

�� = �	
��
�����	���
��	��� ��
�'
���/�, (4) 204 

where Eq. 4 replaces Eq. 1 from the operating model, and (� is the fraction of bias-correction 205 

included for each year.  The bias-correction term ��'
���/� is included to ensure that r0 is equal to 206 

mean (not median) recruitment given unfished spawning biomass.  The corresponding negative 207 

log-likelihood computation is: 208 

−log �ℒ�� = . (� log/&
�1 − ��0 + �
����1����� if 4 = 456
7�
(� log/&
�1 − ��0 + ��
��
89��

���1����� if 4 > 456
7�, (5) 209 

where this equation uses the conditional standard deviation, &
�1 − ��, as the standard deviation 210 

for each recruitment deviation, such that the input standard deviation parameter, &
, corresponds 211 

to the standard deviation across the entire time series and 456
7� refers to the first year that 212 

recruitment deviations are estimated.  This calculation is identical to the negative log-likelihood 213 

≠
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for a normal distribution except that it ignores the additional constant of integration, log �2<�, and 214 

multiplies the conditional standard deviation by the bias-correction term, (�.  Exploratory analysis 215 

suggested that scaling the log of the conditional standard deviation by the bias-correction factor 216 

leads to improved estimates of recruitment variability &
.  However, we note that it is necessary to 217 

remove (� from Eq. 5 when conducting mixed-effects estimation (Thorson et al., 2015b), and that 218 

an alternative bias-corrected estimator is possible using mixed-effects methods without including 219 

an explicit bias-correction term in the likelihood computation (Thorson and Kristensen, 2016).  220 

However, we use Eqs. 4-5 here, following standard practice in penalized likelihood models and 221 

SS.  222 

 We implement bias-correction for each simulation replicate following the approach in Methot 223 

and Taylor (2011) of: 224 

1. Run the model once to identify maximum likelihood estimates and standard errors for all 225 

parameters including ��; 226 

2. Calculate standard error estimates, =>? ����, and estimate the bias-correction for each year, (@� =227 1 − =>? �����/&
�  228 

3. Fit a five-parameter bias-correction “ramp” (Methot and Taylor, 2011) to the annual bias 229 

correction estimates, (@�; 230 

4. Use predictions of bias-correction, (�, for each year in Eq. 1, and re-run the estimation method 231 

to identify maximum likelihood estimates and standard errors for all parameters. 232 

This bias-correction algorithm can be derived under the assumption that recruitment deviations are 233 

a random effect (Thorson and Kristensen, 2016).  For estimation methods with ρ ≠ 0, the bias 234 

correction (� is sometimes greater than 0.0 during the forecast period, particularly for larger levels 235 

of recruitment autocorrelation.  Bias-correction is included during the forecast period because 236 

recruitment deviations at the end of the fishing period (e.g., year 80) will inform recruitment 237 

deviations during the forecast period (e.g., year 81) whenever ρ ≠ 0.  The delta-method is used 238 

for calculating uncertainty in population abundance during the forecast period.  Therefore, forecast 239 

period abundance has a standard error that includes uncertainty about future recruitment 240 

deviations, and this uncertainty is a function of the level of recruitment autocorrelation. 241 

 242 

2.3.1 Estimation method configurations 243 

The following four estimation methods were investigated for each level of ρ: 244 

1. “True” – an estimation method where the autocorrelation parameter was fixed at the level used 245 

to generate the recruitment deviations in the operating model.  This estimation method is not 246 

plausible for any real-world assessment (given that the true value of ρ will never be known), 247 

but is included as a reference case to demonstrate model performance if the extent of 248 

autocorrelation were known exactly. 249 

2. “Zero” – an estimation method where ρ=0.  This estimation method represents the most 250 

common assumption in stock assessment models to date. 251 

3. “Internal” – an estimation method where ρ  is estimated as a fixed effect in SS.  This scenario 252 

will likely result in biased estimates of ρ , given that SS implements “penalized likelihood” 253 

estimation rather than true “mixed-effect” estimation (Thorson and Minto, 2015).  Previous 254 

research demonstrates that penalized likelihood estimation results in negative bias when 255 

estimating the variation in the recruitment deviations (σr, Thorson et al., 2014).  The bias 256 

correction approach developed by Methot and Taylor (2011) is an empirical attempt to 257 

overcome this negative bias.  However, its performance when estimating the magnitude of ρ 258 

has not been previously explored. 259 
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4. “External” – an estimation method where ρ  is estimated externally to SS.  This involves 260 

extracting estimates of recruitment deviations from the “Zero” estimation method, and then 261 

estimating the first-order autocorrelation of these estimates using the acf function in R (R 262 

Core Development Team, 2015).  This level of autocorrelation is then set as a fixed value in 263 

SS and the bias-correction parameters are updated, and then SS is run again.  This estimation 264 

method will likely have different estimation performance than the “Internal” estimation 265 

method, given that sample- and population-level estimates are often different in maximum 266 

likelihood estimates of mixed-effects models (Breslow and Clayton, 1993). 267 

In each scenario, the marginal log-standard deviation of recruitment &
 was fixed at the true value 268 

(Table 1). Steepness was estimated in the “less-information” scenario using a beta prior (mean = 269 

0.65, sd = 0.147) and fixed at the true value for all other scenarios.  270 

 For each estimation method, we specified that fishing mortality was zero during the forecast 271 

period, and this matches the operating model, which has no fishing during the forecast period.  272 

Given that fishing rate is correctly specified during the forecast period, any bias or imprecision in 273 

population abundance during the forecast period arises either from (1) bias and imprecision of 274 

estimated parameters during the fishing period or (2) the impact of mis-specifying ρ during the 275 

forecast period.  The correct input sample size for multinomial composition samples (Ninput = 100) 276 

were specified in each estimation method (i.e., the estimation method had correct weighting for 277 

age-composition sampling data).  Convergence of the estimation method was determined using the 278 

maximum gradient of the objective function, where models with a maximum gradient of less than 279 

0.01 and a positive definite Hessian matrix were assumed to have converged.  Models that failed 280 

to converge were removed from the analysis, and exploratory analysis confirms that results (not 281 

shown) are qualitatively similar when changing the gradient threshold used to identify model 282 

convergence.   283 

 284 

2.3.2 Evaluating model performance 285 

Estimation performance was evaluated using three performance statistics: 286 

1. relative error, A> = /BC − B0/B, where BC and B are estimated and true parameter values, 287 

respectively and a well-performing estimation method will have a relative error close to zero 288 

for all simulation replicates;  289 

2. average absolute relative error, DDA> = /∑ ∑ FA>6,�F�GHI�GJK L�MNO6P� 0 #⁄ , where A>6,� is the relative 290 

error in spawning biomass, nreps is the number of simulation replicates, tmin and tmax are years 291 

over which AARE is calculated (e.g., tmin=26 and tmax=80 when summarizing performance 292 

during the “fishing period”), and # is the total number of observations (i.e., years and 293 

replicates); and 294 

3. yearly forecast interval coverage, defined as the proportion of simulation replicates where the 295 

forecast interval contains the true value from the operating model.  A well-calibrated model 296 

will have approximately nominal forecast interval coverage, i.e., a 50% forecast interval will 297 

contain the true value in 50% of simulation replicates. 298 

3. Results 299 

3.1 Estimating autocorrelation 300 

We first seek to determine whether an integrated assessment model can provide an accurate and 301 

precise estimate of ρ.  We therefore evaluate estimates produced either when treating ρ as a fixed 302 

effect (“Internal”) or when calculating the sample autocorrelation of estimated recruitment 303 

deviations (“External”).  “Internal” estimation is biased towards extreme values in all scenarios 304 



9 

 

(i.e., towards 1.0 when true autocorrelation is positive and towards -1.0 when true autocorrelation 305 

is negative; Fig. 2, top row).  “Internal” estimation also has a high proportion of simulation 306 

replicates that does not converge when the true autocorrelation is 0.9.  In these cases, the estimated 307 

autocorrelation approaches the bound at 1.0 and the Hessian matrix is generally not positive 308 

definite.  By contrast, external estimates of ρ are approximately unbiased for all levels of 309 

autocorrelation (Fig. 2, bottom row). “External” estimation also leads to a larger proportion of 310 

converged replicates compared to “Internal” estimation.  As a sensitivity analysis, we also show 311 

“External” estimates of ρ given different quantities of data for estimating recruitment (Fig. 3; i.e., 312 

with fishery compositional data and survey data starting in either year 41 or 56, compared with 313 

year 26 by default).  This shows that ρ  can be estimated reasonably well with as few as 25 years 314 

of informative data (Fig. 3, bottom row), although estimates become more precise with increasing 315 

years of data. Additionally, “External” estimation was on average less biased than “Internal” 316 

estimation for the “less-information” scenario (A>RRRR = -0.21 and 0.42, respectively).  317 

3.2 Impact of autocorrelation on population forecasts 318 

We next seek to determine the impact of autocorrelated recruitment on population forecasts, and 319 

whether estimating and accounting for ρ improves model performance.  To do so, we first illustrate 320 

the effect of autocorrelated recruitment on estimated spawning biomass for all years (years 1-100) 321 

for a single replicate of the simulation experiment (Fig. 4).  As expected, fixing autocorrelation at 322 

its true value results in a forecast interval that expands rapidly during the forecast period (years 323 

81-100) whenever autocorrelation is substantially different from zero.  Most notable, the lower 324 

confidence bound for forecasts of spawning biomass declines over time when recruitment 325 

autocorrelation is 0.9, despite the forecast model correctly assuming that fishing is absent during 326 

this period (Fig. 4, top right).   327 

 These patterns also hold for the average absolute relative error (AARE) in estimates of 328 

spawning biomass across replicates (Fig. 5).  During the “fishing” period (years 26-80), the AARE 329 

in estimates of spawning biomass is generally less than 0.04 for all estimation methods and all 330 

levels of true autocorrelation.  We therefore conclude that increased recruitment autocorrelation, 331 

or mis-specifying recruitment autocorrelation, has relatively little impact on the precision and 332 

accuracy of estimates of spawning biomass during the period with information to estimate 333 

recruitment deviations, given an otherwise correctly specified model.  However, increased 334 

autocorrelation leads to a large increase in AARE during the forecast period (years 81-100), such 335 

that AARE is 0.20-0.26 when autocorrelation is 0.9.  All estimation methods have an AARE of 336 

0.1 during the forecast period when recruitment is not autocorrelated, but when ρ is high (� =337 0.75 or 0.9) the “True” and “External” methods have lower AARE (0.17-0.18 and 0.20-0.21) than 338 

the “Zero” method (0.19 and 0.26).  All estimation methods have a small positive bias in spawning 339 

biomass during the forecast period when autocorrelation is 0.75 and even more so when 340 

autocorrelation is 0.9.  Exploratory analysis indicates that this bias arises due to the nonlinear 341 

stock-recruit function, i.e., because calculating forecasts based on the mean of the stock-recruit 342 

function is not identical to the expectation of the forecast due to this nonlinearity. 343 

 Finally, we illustrate 50% forecast interval coverage for each estimation method, defined as 344 

the proportion of simulation replicates where true spawning biomass falls within a 50% forecast 345 

interval (Fig. 6).  A well-performing estimation method will have nominal coverage probability, 346 

i.e., 50% of simulation replicates will fall within the 50% interval.  When autocorrelation is absent 347 

(Fig. 6, column “0.00”), all estimation methods have approximately nominal coverage, although 348 

they exhibit less-than-50% coverage (indicating too narrow of forecast intervals) in years 84-87.  349 
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When ρ is fixed at its true value (Fig. 6, top row), coverage remains close to 50% for all levels of 350 

true autocorrelation.  However, increasing true autocorrelation leads to a large decline in coverage 351 

for the “Zero” estimation method (Fig. 6, 2nd row).  Coverage is close to 20% in year 90 for this 352 

estimation method (only 10 years into the forecast period) when true autocorrelation is 0.75, and 353 

is approximately 10% in this year when true autocorrelation is 0.9.  By contrast, coverage is 354 

slightly smaller than 50% for the external estimation method when true autocorrelation is 0.75 or 355 

0.9.  We therefore conclude that external estimation substantially improved forecast interval 356 

performance relative to a model that neglects autocorrelated recruitment. Coverage was similar for 357 

a 75% forecast interval, though more variable and less optimistic (Fig. 6, open circles). Coverage 358 

was less than expected for all estimation methods in the “less-information” scenario (Fig. 7). 359 

4. Discussion 360 

Fisheries management in the United States and worldwide increasingly uses integrated stock 361 

assessment models to evaluate the likely impact of alternative management measures on fish 362 

population abundance.  The United States and Europe both seek to end overfishing and rebuild 363 

overfished stocks (see Magnuson-Stevens Fishery Conservation and Management Reauthorization 364 

Act of 2006, http://www.nmfs.noaa.gov, and European Union Common Fisheries Policy, 365 

http://ec.europa.eu/fisheries/cfp/index_en.htm).  Rebuilding plans for overfished stocks in the 366 

United States are based upon forecasts of population abundance, and each United States Regional 367 

Fisheries Management Council is required to develop an approved Rebuilding Plan that will result 368 

in rebuilding within a pre-determined time frame.  Rebuilding Plans are also required to be more 369 

likely than not to succeed in their stated timeframe, i.e., rebuilding plans are premised on a 370 

probabilistic interpretation of the forecasts generated from integrated stock assessment models.  A 371 

probabilistic interpretation of catch advice arising from stock assessment models is also used in 372 

many United States regions to incorporate scientific uncertainty when defining catch limits 373 

(Shertzer et al., 2008) or when interpreting stock status relative to biological reference points (e.g., 374 

Stewart et al., 2013).   375 

 In this study, we demonstrate that autocorrelated recruitment has a substantial impact upon 376 

both the accuracy of forecasts (i.e., how close they are to the true value) as well as the width of 377 

forecast intervals (i.e., the magnitude of the estimated standard error for forecasts).  In particular, 378 

high levels of autocorrelation (i.e., ρ>0.5) result in substantial increases in the relative error of 379 

population forecasts, regardless of whether the stock assessment accounts for recruitment 380 

autocorrelation or not.  Also, a model where autocorrelation is fixed at its true value showed that 381 

forecast interval width is substantially increased when autocorrelation is high compared to when 382 

it is zero.  These results confirm that the certainty of population forecasts is highly dependent upon 383 

the presence or absence of recruitment autocorrelation.  Presumably, high recruitment 384 

autocorrelation could contribute to the lack of rebuilding for some fishes under rebuilding plans 385 

worldwide, particularly if forecasted biomass is overestimated, as in our results (Hutchings, 2001; 386 

Neubauer et al., 2013).  Previous analysis of model output from stock assessment models suggests 387 

that recruitment may have intermediate, positive autocorrelation for marine fishes (Ianelli, 2002; 388 

Thorson et al., 2014).  However, care should be taken when interpreting these previous results, as 389 

well as results from the “External” estimation method, which are based on model-output (Brooks 390 

and Deroba, 2015; Thorson et al., 2015a).   391 

 We have also shown improvements in forecast interval performance when fixing 392 

autocorrelation at the sample autocorrelation of estimated recruitment deviations (the “External” 393 

estimation method).  Accuracy of forecast interval width is less important for forecasts that only 394 
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utilize the median, but if fisheries managers use other quantities from the forecast (i.e., seek a 395 

management procedure that achieves a target biomass with 75% probability), or have Harvest 396 

Control Rules where the percentile for catch advice depends on the degree of depletion, then it is 397 

necessary to have accurate estimates of forecast interval width.  Our simulation results show that 398 

the “External” estimate of autocorrelation provides less biased estimates of autocorrelation than 399 

estimating autocorrelation as a fixed effect, as currently implemented in SS.   400 

 The poor forecast interval performance when estimating autocorrelation as a fixed effect likely 401 

arises from the use of penalized-likelihood estimation methods.  Penalized likelihood has 402 

previously been shown to result in negatively biased estimates of the variance of recruitment 403 

deviations (Thorson et al., 2015b), and a sample-based statistic has therefore been developed for 404 

estimating this variance (Methot and Taylor, 2011).  We tried modifying the Methot and Taylor 405 

(2011) approach to account for the impact of ρ on the realized variance of recruitments, by 406 

replacing the negative log-likelihood computation (Eq. 5) with the following: 407 

−log �ℒ�� = . (� log�&
� + �
����1����� if 4 = 456
7�
(� log�&
� + ��
��
89��

���1����� if 4 > 456
7� (6) 408 

This modification resulted in estimates of ρ that were biased towards zero (results not shown), and 409 

we chose to proceed with Eq. 5, given that it has a stronger statistical justification.  We note that 410 

fixing ρ at an externally derived value does not propagate uncertainty about the magnitude of 411 

autocorrelation when estimating standard errors for other parameters or derived quantities for 412 

management (e.g., the CV of average unfished spawning biomass may be different when ρ is 413 

estimated compared to when ρ is fixed).   414 

 Results presented here are representative of the best case scenario.  Estimation methods were 415 

fit to a relatively large amount of informative data (i.e., data was available from both the fishery 416 

and a survey on a yearly basis) and were correctly specified.  Furthermore, steepness and the 417 

marginal standard deviation of recruitment deviations were fixed at their true values. Previous 418 

research documented an inability to estimate steepness when autocorrelated recruitment deviations 419 

were accounted for (i.e., fixed at an externally estimated value) within the stock assessment 420 

framework (Butterworth et al., 2003; Ianelli, 2002), but did not investigate the effect of estimating 421 

steepness and autocorrelation on forecasts.  Estimating steepness proved to be difficult no matter 422 

which estimation method was used to account for autocorrelated recruitment deviations, reminding 423 

us that poor forecast coverage can arise from causes other than autocorrelated recruitment. Future 424 

research could explore sensitivity to many types of model mis-specification, including: estimating 425 

steepness with more-informative data (e.g., catches from a stock experiencing a large contrast in 426 

spawning biomass) or mis-specifying its value; mis-specifying selectivity or growth parameters, 427 

such that estimated recruitment deviations incorporate process errors from mis-specifying other 428 

model components; and alternative forms for recruitment.  In particular, we hypothesize that 429 

periodic changes in average recruitment (“regime shifts”) will appear as 2nd or higher-order 430 

autocorrelation, and that our specification of 1st-order autocorrelation might be a poor 431 

approximation in these causes.   432 

 Based on our results here, we identify several useful avenues for future research: 433 

1. Most obviously, research could explore whether a mixed-effects estimate of autocorrelation 434 

could improve performance when estimating autocorrelation as a model parameter.  Mixed-435 

effects estimation is increasingly feasible using either the Laplace approximation (Kristensen 436 
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et al., 2016; Skaug and Fournier, 2006; Thorson et al., 2015b) or Markov-chain Monte Carlo 437 

sampling (Stewart et al., 2013).   438 

2. Future research could also explore the impact of autocorrelated recruitment on harvest strategy 439 

performance when either estimating or ignoring autocorrelation.  Autocorrelated errors during 440 

forecast intervals are likely to impact the performance of harvest strategies (Wiedenmann et 441 

al., 2015), but it remains unclear whether the magnitude of improvements from estimating the 442 

extent of autocorrelation outweigh the additional complexity when developing and explaining 443 

the model. 444 

3. Bias adjustment methods (Methot and Taylor, 2011) were developed without accounting for 445 

ρ, and future research should investigate how to account for this bias as well as autocorrelated 446 

recruitment deviations.  In particular, we recommend further investigation of mixed-effects 447 

estimation and associated bias-correction methods (Thorson and Kristensen, 2016; Thorson 448 

and Minto, 2015) as a generic solution to bias-correction for autocorrelated errors.   449 

4. Finally, many parameters are likely to vary over time in stock assessment models, including 450 

growth, maturity, selectivity, and productivity (Martell and Stewart, 2014; Thorson et al., In 451 

press).  These processes (e.g., time-varying selectivity) could affect the interpretation of length 452 

composition samples, so neglecting time-varying selectivity could in some cases appear as 453 

autocorrelated recruitment (Butterworth et al., 2003).  We did not explore the impact of 454 

multiple time-varying parameters on estimates of recruitment autocorrelation, and its potential 455 

impact remains difficult to predict.  We therefore recommend ongoing research to develop 456 

tools to identify and account for time-varying parameters in stock assessment models. 457 

  458 

5. Conclusions 459 

We conclude that “External” estimation will likely result in better estimates of the magnitude of 460 

autocorrelated recruitment when estimation is based on penalized likelihood.  The estimation of ρ 461 

appears to be most important for the forecast period as bias and precision were similar among mis-462 

specified and correctly specified models for the estimation period.  Consequently, future research 463 

should prioritize including ρ in all forecasts regardless of its magnitude and obtaining the best 464 

external estimate of ρ possible, especially if forecasts are performed outside of the stock 465 

assessment model.  Unfortunately, even when ρ is fixed at its true value forecast coverage is poor 466 

for the first ten years when autocorrelation is high.  Therefore, rebuilding within 10 years for stocks 467 

likely to have autocorrelated recruitment may necessitate updating the assessment more than once 468 

during the 10 year period, and, potentially, even more frequently depending on the quality of 469 

available data. 470 
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Table 1. Parameter specifications used in the operating models (OMs) and estimation methods 600 

(EMs). Parameter specifications that vary among scenarios (combinations of OMs and EMs) are 601 

denoted in the table. 602 

Parameter  OM EM 

Name Symbol True 
value 

Fixed (F) or 
Estimated 
(Est) 

Natural mortality rate M 0.2 yr-1 F 

Length at age 1 La=1 20 cm F 

Asymptotic maximum length L∞ 132 cm F 

Von Bertalanffy growth coefficient k 0.2 yr-1 F 

Coefficient of variation for length at age 1 CVa=1 0.1 F 

Coefficient of variation for asymptotic maximum 
length 

CV∞ 0.1 F 

Length at 50% maturity B�XY� 38.2 cm F 

Length at 95% maturity B�XY� 48.9 cm F 

Average recruits for the unfished population (natural 
log) 

ln(r0) 18.7 Est 

Steepness of the Beverton-Holt stock recruit function h 0.65 F1 

Marginal log-standard deviation of recruitment σR 0.42 F 

Magnitude of autocorrelated recruitment ρ Varies varies 

Random coefficients for recruitment variability (years 
1-100) 

δt Varies Est 

Catchability coefficient for survey index of 
abundance (natural log) 

ln(q) 0 Est 

Length at 50% selection in the fishery B�567	Z
[
 38.2 cm Est 

Length at 95% selection in the fishery B�567	Z
[
 48.9 cm Est 

Length at 50% selection in the survey B�7\
]Z[
 30.6 cm Est 

Length at 95% selection in the survey B�7\
]Z[
 39.1 cm Est 

1Steepness is estimated in the “less-information” scenario using a beta prior (mean = 0.65, sd = 0.147). 603 
2Marginal log-standard deviation of recruitment is 0.6 in the “less-information” scenario. 604 

  605 
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Fig. 1. Examples of fifty years of autocorrelated recruitment deviations for three levels of ρ: (i) -606 

0.25 (dashed line), (ii) 0.00 (solid line), and 0.75 (dotted line), where each example used the same 607 

set of process error deviations (^_). 608 

  609 
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Fig. 2. Estimates of recruitment autocorrelation (ρ) from two estimation methods: (i) estimated as 610 

a fixed effect within Stock Synthesis simultaneously with other parameter estimation (“Internal”; 611 

top row) and (ii) calculated as the sample autocorrelation of recruitment deviations estimated in 612 

Stock Synthesis when ρ is fixed at zero (“External”; bottom row), for six (true) levels of 613 

recruitment autocorrelation (columns). The dashed red line illustrates the true level of 614 

autocorrelation, while the black shaded area is a histogram representing the simulation distribution 615 

for each scenario and estimation method. The number in the top left of each plot indicates the 616 

number of converged runs (out of 100). 617 

  618 
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Fig. 3. Estimates of recruitment autocorrelation (ρ) from the “External” estimation method, where 619 

it is calculated as the sample autocorrelation of recruitment deviations estimated in Stock 620 

Synthesis, for six (true) levels of recruitment autocorrelation (columns) and three different starting 621 

years for fishery length- and age-composition samples. The dashed red line illustrates the true level 622 

of autocorrelation, while the black shaded area is a histogram representing the simulation 623 

distribution for each scenario and estimation method. The number in the top left of each plot 624 

indicates the number of converged runs (out of 100). 625 

 626 
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 Fig. 4. Illustration of estimated spawning biomass during 100 simulated years for different scenarios (columns, where recruitment 627 

autocorrelation is ρ={-0.25, 0.0, 0.25, 0.5, 0.75, 0.9}), and four estimation method (rows: “True”, “Zero”, “Internal”, and “External”), 628 

where each panel shows the true spawning biomass (black line) and the red shaded area shows the 95% confidence and forecasting 629 

intervals for the estimated spawning biomass.630 
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Fig. 5. Relative error in spawning biomass during years for which the estimation method was provided data (years 26 through 80) and 631 

the forecast period (years 81 through 100, to the right of vertical red dashed lines) for six levels of autocorrelation in the simulated data 632 

(columns) and four estimation methods (rows). Horizontal dashed red lines indicate a relative error of zero. Upper and lower edges of 633 

the boxes correspond to the first and third quartiles (the 25th and 75th percentiles) and the whiskers correspond to 1.5 times the distance 634 

between the first and third quartiles. In each plot, the number in the top left indicates the number of converged runs (out of 100), the 635 

bottom left number is AARE for the years with data, while the bottom right number is AARE in the forecast. 636 

 637 

  638 
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Fig. 6.  Performance of forecast interval estimates for different estimation methods (rows) and levels of autocorrelation (columns), where 639 

each panel shows the proportion of 50% (closed circles) and 75% (open circles) forecast intervals for spawning biomass that contain the 640 

true value. A well calibrated 50% forecast interval will contain the true value 50% of the time. Calibration lines for both 75% and 50% 641 

forecast intervals are indicated by the red dashed lines in each panel, respectively.  Points above or below the line indicate forecast 642 

intervals were too conservative (wide) or permissive (not wide enough), respectively. In each plot, the number in the top left indicates 643 

the number of converged runs (out of 100). 644 
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Fig. 7.  Relative error in spawning biomass (left column) and forecast coverage of spawning biomass (right column) for the “less-646 

information” scenario across four estimation methods (rows) when estimating steepness. Relative error in spawning biomass is shown 647 

for years for which the estimation method was provided data (years 41 through 80) and the forecast period (years 81 through 100, to the 648 

right of vertical red dashed lines), where the horizontal dashed red lines indicate a relative error of zero. Upper and lower edges of the 649 

boxes correspond to the first and third quartiles (the 25th and 75th percentiles) and the whiskers correspond to 1.5 times the distance 650 

between the first and third quartiles. Performance of forecast interval estimates shows the proportion of 50% (closed circles) and 75% 651 

(open circles) forecast intervals for spawning biomass that contain the true value. A well calibrated 50% forecast interval will contain 652 

the true value 50% of the time. Calibration lines for both 75% and 50% forecast intervals are indicated by the red dashed lines in each 653 

panel, respectively.  Points above or below the line indicate forecast intervals were too conservative (wide) or permissive (not wide 654 

enough), respectively. In each plot, the number in the top left indicates the number of converged runs (out of 100) and the number in 655 

the top right indicates the relative error in steepness. In each plot, the number in the top left indicates the number of converged runs (out 656 

of 100), the top right is the relative error in steepness, the bottom left number is AARE for the years with data, while the bottom right 657 

number is AARE in the forecast. 658 
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